Newforms on Gamma_0(l) of Haupttypus

Newforms ordered by degree of their fields of definition and by Galois group of the Galois closure of these fields: weight 4 to 12


Newforms of weight 4
degree 2
[2, -1, 1, "S2"] 11a 13b 21c 27c 29a 31a 33c 33d 34c 35b 38b 38c 39b 44b 46c 46d 51d 52b 55b 56c 57b 58c 59a 59b 63d 63e 65b 65c 65d 66c 69a 69b 75c 75d 75e 75f 76a 77b 79a 81a 81b 81c 81d 81e 82c 85d 86c 87a 87b 88c 93b 93c 93d 94a 94b 98g 98h 99c 99d 99e 99f 99g 100d 102e 102f 104c 104d 105c 105d 105e 105f 105g 106a 110i 112h 114e 114f 115c 116a 116b 117c 117d 117e 121b 121c 121d 121e 122a 128e 128f 128g 128h 129c 130c 130d 130e 130f 130g 134b 136a 138d 138e 139a 141a 146b 146c 147i 147j 147k 152a 153e 154f 154g 154h 156c 156d 160c 160d 160e 160f 160g 162e 162f 162g 162h 165c 166b 168g 168h 169f 169g 169h 169i 169j 170c 170d 170e 170f 171e 174g 175c 175d 175e 176g 176h 176i 182e 182f 182g 182h 186h 186i 189e 189f 189g 189h 189i 190d 190e 190f 195e 196e 196f 196g 198h 198i 198j 200k 200l
degree 3
[6, -1, 2, "S3"] 17b 19b 35c 39c 41a 47a 51e 55c 57c 58d 62c 62d 68b 74c 76b 82d 82e 85e 85f 86d 88d 91a 92a 92b 93e 95e 104e 106b 106c 111d 116c 117f 118d 119b 122b 134c 135e 135f 135g 135h 136b 136c 138f 147l 147m 152b 152c 153f 153g 154i 158b 159c 164a 165d 165e 165f 165g 170g 170h 171f 171g 174h 174i 175f 176j 178a 182i 182j 183b 184c 184d 186j 187b 189j 189k 190g 190h 190i 194a 195f 195g
degree 4
[24, -1, 5, "S4"] 23b 37a 43a 53b 55d 57d 69c 69d 71b 74d 77c 77d 86e 91b 94c 94d 118e 119c 122c 123a 123b 124a 124b 136d 142a 142b 143a 148a 155b 159d 165h 171h 175g 175h 184e 184f 194b 195h 195i 195j
[4, 1, 2, "E(4) = 2[x]2"] 49e 121f 121g 158c 189l
[8, -1, 3, "D(4)"] 117g 125a 153h 153i 187c
degree 5
[120, -1, 5, "S5"] 29b 31b 37b 65e 77e 79b 85g 87c 87d 91c 95f 106d 111e 115d 115e 118f 129d 129e 134d 141b 141c 141d 142c 142d 148b 152d 161a 166c 172a 175i 175j 178b
degree 6
[720, -1, 16, "S6"] 43b 61a 89c 91d 93f 95g 122d 123c 123d 133b 133c 134e 143b 145b 145c 146d 155c 158d 166d 172b 178c 188a 188b
[12, -1, 3, "D(6) = S(3)[x]2"] 121h
[72, -1, 13, "F_36(6):2 = [S(3)^2]2 = S(3) wr 2"] 125b 125c
[48, -1, 11, "2S_4(6) = [2^3]S(3) = 2 wr S(3)"] 158e 171i
degree 7
[5040, -1, 7, "S7"] 41b 67a 73b 83a 111f 119d 133d 141e 145d 146e 164b 166e 177a 177b 183c 185a 185b
degree 8
[40320, -1, 50, "S8"] 47b 53c 115f 129f 133e 145e 159e 161b 177c 177d 178d 183d 194c
[128, -1, 35, "[2^4]D(4)"] 125d
degree 9
[362880, -1, 34, "S9"] 61b 67b 101a 119e 143c 155d 159f 161c 194d
[648, -1, 28, "[S(3)^3]3=S(3)wr3"] 169k 169l
degree 10
[3628800, -1, 45, "S10"] 59c 73c 103a 107a 155e 185c 187d 187e
degree 11
[39916800, -1, 8, "S11"] 97a 131a 143d 183e

Newforms of weight 6
degree 2
[2, -1, 1, "S2"] 7b 13a 15c 19c 22d 25b 25c 25d 26b 26c 27b 27c 27d 32d 33c 33d 33e 34b 34c 35b 38c 39b 40d 44b 45d 45e 45f 46a 46b 49c 49d 49e 49f 51a 56c 56d 56e 57c 58a 62a 62b 63f 63g 64h 66e 66f 68a 69a 70g 70h 75f 75g 75h 75i 75j 78g 78h 80i 81a 81b 84c 84d 88a 96g 96h 98c 98d 98e 98f 98g 98h 99d 99e 99f 100c 100d 100e 102f 102g 104b 105a 105b 105c 105d 105e 105f 108b 108c 108d 110e 110f 112h 112i 112j 112k 114e 114f 114g 115a 116b 116c 117b 117c 120g 120h
degree 3
[6, -1, 2, "S3"] 11b 13b 23a 34d 35c 38d 39c 46c 46d 51b 52c 55a 57d 57e 58b 65b 69b 74c 76a 82a 86a 86b 88b 99g 102h 104c 110g 110h 114h 114i 117d 117e
degree 4
[24, -1, 5, "S4"] 17c 19d 29a 35d 39d 51c 55b 57f 58c 58d 62c 62d 65c 68b 69c 69d 76b 77b 81c 81d 82b 87a 88c 88d 92a 92b 93a 94a 94b 104d 105g 105h 106a 117f
[4, 1, 2, "E(4) = 2[x]2"] 49g 98i
[8, -1, 3, "D(4)"] 63h 117g
degree 5
[120, -1, 5, "S5"] 31a 51d 55c 69e 74d 74e 77c 82c 85a 86c 87b 93b 95b 99h 99i 104e 111a 118a
degree 6
[720, -1, 16, "S6"] 23b 41a 55d 65d 65e 77d 82d 86d 91a 94c 94d 95c 106b 106c 111b 116d 118b 118c
[12, -1, 3, "D(6) = S(3)[x]2"] 81e
[48, -1, 11, "2S_4(6) = [2^3]S(3) = 2 wr S(3)"] 117h
degree 7
[5040, -1, 7, "S7"] 29b 37a 47a 85b 87c 91b 93c 106d 115b 115c 119a
degree 8
[40320, -1, 50, "S8"] 31b 37b 43a 77e 85c 85d 87d 91c 93d 118d 119b
degree 9
[362880, -1, 34, "S9"] 53a 59a 91d 95d 95e 111c
degree 10
[3628800, -1, 45, "S10"] 41b 43b 111d 115d
degree 11
[39916800, -1, 8, "S11"] 61a 71a

Newforms of weight 8
degree 2
[2, -1, 1, "S2"] 5b 7b 9b 11a 13b 14c 15c 20b 21b 21c 22d 25b 25c 25d 25e 26d 26e 27b 27c 27d 27e 28a 28b 32b 32c 32d 33b 33c 34d 35a 38b 38c 38d 39a 40b 40c 40d 45h 45i 46a 49c 49d 50i 50j 51a 54g 54h 56c
degree 3
[6, -1, 2, "S3"] 17b 21d 33d 34e 35b 39b 44a 46b 46c 51b 52b 52c 56d 56e 58a 58b
degree 4
[24, -1, 5, "S4"] 11b 13c 19a 33e 35c 38e 39c 44b 46d 49e 49f 51c 51d 55a 57a 58c
degree 5
[120, -1, 5, "S5"] 23a 35d 39d 51e 55b 57b 58d
degree 6
[720, -1, 16, "S6"] 17c 19b 55c 57c
degree 7
[5040, -1, 7, "S7"] 29a 31a 55d 57d
degree 8
[40320, -1, 50, "S8"] 23b
[48, 1, 24, "E(8):D_6=S(4)[x]2"] 49g

Newforms of weight 10
degree 2
[2, -1, 1, "S2"] 5b 7a 14c 15c 15d 20b 21b 21c 22d 22e 24d 25b 27a 28a 28b 32b 32c 32d 32e 34a 35b 36c 40a 40b 40c
degree 3
[6, -1, 2, "S3"] 7b 11a 21d 25c 25d 26d 26e 27b 27c 33a 33b 34b 34c 38c 39a 40d
degree 4
[24, -1, 5, "S4"] 13a 33c 33d 34d 35c 38d 38e 39b
[8, -1, 3, "D(4)"] 25e 27d
degree 5
[120, -1, 5, "S5"] 11b 13b 17a 35d 39c
degree 6
[720, -1, 16, "S6"] 19a 35e 39d
degree 7
[5040, -1, 7, "S7"] 17b 23a
degree 8
[40320, -1, 50, "S8"] 19b
degree 9
[362880, -1, 34, "S9"] 29a
degree 10
[3628800, -1, 45, "S10"] 23b 31a

Newforms of weight 12
degree 2
[2, -1, 1, "S2"] 5b 7a 8b 9c 10d 14c 14d 15b 15c 16d 20b 22a 24d 25c 26a 26b 27b
degree 3
[6, -1, 2, "S3"] 7b 11a 15d 21c 21d 22b 22c 22d 26c 28a 28b
degree 4
[24, -1, 5, "S4"] 21e 25e 25f 26d 27d 27e
[8, -1, 3, "D(4)"] 25d 27c
degree 5
[120, -1, 5, "S5"] 11b 13a
degree 6
[720, -1, 16, "S6"] 13b 17a
degree 7
[5040, -1, 7, "S7"] 19a
degree 8
[40320, -1, 50, "S8"] 17b 23a
degree 9
[362880, -1, 34, "S9"] 19b